Reducing the Uncertainty in Climate Predictions: Steps Toward Realizing the Potential of NASA's Earth Observing System, and Reducing Aerosol-Related Climate-Forcing Uncertainty

Ralph Kahn **NASA Goddard Space Flight Center**

Multi-model Simulations of Global Mean Surface Temperature Timeline

From IPCC AR-6

Temperature anomaly simulations for 1850-2014 + forecasts using a moderate assumed future scenario (SSP1-2.6) for 2015-2100, for 25 models (gray lines) +

Measurement – where available (black lines)

Aerosol Climate Forcing **– The contributions aerosols make toward heating & cooling the Earth System** *Particle Microphysical Property Assumption & Cloud Process Uncertainties Dominate; Trace-gas Distributions also matter*

Forcing uncertainty translates into prediction uncertainty

Aerosol-related forcing uncertainty represents *the largest uncertainty overall* **for making climate predictions**

IPCC Equilibrium Climate Sensitivity Estimates & Estimated Uncertainties

From IPCC AR-6 Technical Summary

Ground-Based Views

Phoenix Dust Storm 05 July 2011 Phoenix New Times https://www.noaa.gov/stories/where-there-s-wildfire-there-s-forecast

Hunga-Tonga eruption 15 January 2022 – CBS News

SeaWiFS - Sahara Dust over Canary Islands March 1998

What Satellites Offer

MODIS - Smoke from Alaska fires July 1, 2004

Saharan Dust Storm 8-day Trajectory Beginning 07 June 1967 ESSA 5 Satellite

Aerosol – Related Climate

Effects *Aerosol Direct Radiative Forcing –*

• Surface Cooling by Reflecting Sunlight (most particles)

• Atmospheric Warming by Absorbing Sunlight (dark particles)

Mt. Sinabung, Indonesia, March 2021 From *The Atlantic*

Aerosol Indirect Effects on Clouds –

- Cloud Brightening (CCN in aerosol-poor region make more, smaller droplets – but changes in total liquid water also occur)
- Increase in Cloud Lifetime
- Cloud Dissipation (dark-particle "semi-direct" effect)
- Cloud Invigoration (smaller droplets rise to freezing elevation)

Helianthus annuus pollen From *en.wikipedia.org*

Other Aerosol Effects –

- Ocean Fertilization (desert dust to iron-poor waters)
- Land Fertilization (e.g., phosphorous to Amazon)
- Transport of Pollen, Disease Vectors, etc.
- Atmospheric Circulation, Water Cycle changes

From *https://aviation.stackexchange.com*

Climate – Related Changes in

Phoenix Dust Storm 05 July 2011 Phoenix New Times

Increasing Wildfire Smoke – Due to:

- Increasing Temperature
- Decreasing Relative Humidity (Drought + Higher Temp.)
- Ecosystem Collapse (Environmental Stress + Vulnerability to Pests, Disease)

Also Increasing PyroCumulonimbus-formation conditions

Aerosols

Increasing Airborne Dust – Due to:

- Desertification (Deforestation, Drying Water Resources, Over-grazing, Other Farming Practices)
- Changing Wind & Precipitation Patterns

Northern California Camp Fire June 2019 Wired

Changes in Biogenic & Photochemical Particle Formation – with changing Temp., Humidity, Land Cover, etc.

The Distinction between "Natural" and "Anthropogenic" Aerosol Has Become Ambiguous…

Highlights the essential & unique role of each community in completing the aerosol forcing picture…

The NASA Earth Observing System's Terra Satellite

Terra Project Office / NASA Goddard Space Flight Center

The NASA Earth Observing System's Terra Satellite

MODerate-resolution Imaging Spectroradiometer [MODIS]

- NASA, Terra & Aqua
	- Launches: 1999, 2001
	- 704 km polar orbits, descending (10:30 a.m.) & ascending (1:30 p.m.)
- Sensor Characteristics
	- 36 spectral bands ranging from 0.41 to 14.385 µm
	- cross-track scan mirror with 2330 km swath width
	- Spatial resolutions:
		- 250 m (bands $1 2$)
		- 500 m (bands 3 7)
		- 1000 m (bands 8 36)
	- 2% reflectance calibration accuracy
	- onboard solar diffuser & solar diffuser stability monitor

Improved over AVHRR:

- Calibration
- Spatial Resolution
- Spectral Range $&$ # Bands

Satellites Do a Reasonable Job with Monthly, Mid-visible AOD

Monthly, Global Aerosol Amount **MODIS Mid-visible AOD (Dark Target + Deep Blue) July 2010**

Recent Advance: *Pixel-Level AOD Uncertainty Estimates*

Importantly, this requirement, especially for AOD assimilation, came from AeroCom/AeroSat discussions

MODIS Team, NASA/GSFC

MISR Pixel-Level AOD Uncertainty Estimation Process

Figure 1. Example of calculation steps performed in the new methodology for determining AOD and its uncertainty. (a) χ^2_{abs} values for 74 MISR mixtures as a function of AOD (τ) (Eq. 1); (b) inverse (reciprocal) values for the 74 mixtures; and (c) inverse residuals averaged over all mixtures (Eq. 2), with the new retrieved AOD, ARCI, and FWHM indicated on the distribution. The x-axis scale is logarithmic in panel (a) for a better visualization of the cost function at low τ .

Witek et al., AMT 2018

Multi-angle Imaging SpectroRadiometer

http://www-misr.jpl.nasa.gov http://eosweb.larc.nasa.gov

- **Nine CCD push-broom cameras**
- **Nine view angles at Earth surface: 70.5º forward to 70.5º aft**
- **Four spectral bands at each angle: 446, 558, 672, 866 nm**
- **Studies** *Aerosols***,** *Clouds***, &** *Surface*

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

Parallax → Plume Height Multi-angle (7 min) \rightarrow **Motion Vectors**

 Red = zero-wind height $Blue = wind-corrected height$

Green = surface elevation *Junghenn-Noyes, Kahn, et al. 2020*

Wildfire Smoke *Injection Heights* & *Source Strengths*

[These are *the two key parameters* **representing aerosol sources in climate models]**

for *Different Assumed Source Strengths*

Systematically in Different Regions

These two projects are the subjects of current AeroCom/AeroSat Experiments

Petrenko, Kahn, et al., *JGR 2012; 2017; 2023 in prep.*

Morth 484 **North 484 | MISR Wildfire Smoke Injection Height Climatology**

- Individual Heights at *1.1 km Horizontal* res., *~250-500 m Vertical* res.
- Both *Pixel-weighted* and *AOD-weighted* profiles derived
- Fire emissions are *Stratified by Altitude*, *Region*, *Ecosystem*, *& Season*
- The cases in each stratum are *Averaged* to produce a statistical summary
- Inter-annual and/or sub-seasonal *temporal resolution* might be needed in some cases; requires detailed, regional study (e.g., Amazon)

https://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes2/

Val Martin, Kahn & Tosca; Remt. Sens. 2018

Global Distribution of Percent Injected Within/Above the PBL **Based on MERRA-2 Hourly PBL 10:00-13:00 LT**

Accounting for uncertainty FT = PBL + 500 m

[PBL from MERRA-2]

2 km threshold avoids dependence on PBL height estimate

Satellites Also Constrain Aerosol Layer Height

Maritime

Single-scattering Phase Functions for *Different Particle Properties*

Los Alamos Fire, New Mexico May 9, 2000

MISR 60˚ Forward

MISR Nadir

MISR 60˚ Aft

Medium Spherical Smoke Particles

Dust blowing off the Sahara Desert -- 6 February 2004

Large Non-Spherical Dust Particles

MISR **Aerosol Type Discrimination**

Kahn & Gaitley JGR 2015

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

From *Particle Type*, can infer: *Processes* & *Timescales*

- Oxidation progressively along plume
- Region II: Coagulation or hydration
- Region III: Gravitational settling
- Region IV: More BC from SW fire
- Validated w/FIREX *in situ* data
- Can now use MISR data globally, where field data are lacking

48.2° N **Black Smoke AOD Fraction** 48.1°N 48°N 47.9° 47.8° N 117.8°W 118.6°W 118.4°W $118.2^{\circ}W$ $118°W$ 0.8 0.0 0.2 0.4 0.6 % AOD (558 nm)

Junghenn-Noyes, Kahn, et al. 2020

The *timescales* over which *particle-type transitions* occur differ between plume types

- *Nonabsorbing* components begin to dominate over *absorbing* components
- **Medium** size components begin to dominate over *small* size components

Forest plumes

 $~2.5 - 3$ hours; Larger, brighter particles; higher AOD & BrS

Woody plumes

Grassy plumes

 \sim 3 - 3.5 hours

 \sim 4 - 7 hours for type NO increase in size; Smaller, darker particles; Lower AOD, highest BlS

Condensation/hydration probably dominate for F and W plumes, but dilution probably affects G plumes more

Canada-Alaska Smoke Plume Property Trends (663 plumes; 2016-2019)

Particle Size – *Very Small***,** *Small***,** *Medium***,** *Large*

Particle Type – *Black Smoke***,** *Brown Smoke***,** *Non-absorbing*

[Current study: *Siberia*] Junghenn-Noyes, Kahn, et al. ACP 2022

Volcanology from Space

Flower & Kahn 2017-2019

Timeline of Plume Observations – *Holuhraun Aug 2014-Feb 2015*

Multi-sensor eruption assessment

Particle properties relatively constant as the eruption progressed (minor variations due to cloud contamination)

• Retrievals dominated by *small, spherical, nonabsorbing* components

As the eruption progressed there were *decreases* in:

- plume detection and height
- $SO₂$ emission
- lava flow detection

Overall *higher thermal radiance* and *large flow area* than observed at Eyjafjallajökull

Plume from the *Hunga-Tonga Hunga-Ha'apai Volcano Eruption MISR Active Aerosol Plume-Height (AAP) Project 20 January 2022, ~02:38 UTC*

2822

Larmonth AERONET Aerosol Amount

MISR Plume Height 24- 29**; AERONET AOD** ~0.9; **ANG** ~1.05

Plume from the *Hunga-Tonga Hunga-Ha'apai Volcano Eruption MISR Active Aerosol Plume-Height (AAP) Project 20 January 2022*

113

 1.0

 1.2

 1.4

20 January

111

 0.6

 0.8

 -24

 -25

 -26

 0.4

ANG: ~1/[Aerosol Effective Size]

AOD ~ 0.4-0.6; **ANG** ~1.2; **SSA** ~1.0; **Fine-mode** ~0.9%, **Medium-mode** ~0.1%, **NSph** < 5% *Kahn, et al. 2023, in preparation*

Hunga Plume Evolution • For the mid-stratospheric plume (~30 km

- ASL), we see small-medium, spherical, non-light-absorbing particles dominating in the MISR retrievals, and they grow between 17 and 20 January, and then a reduction in retrieved effective particle size between 20 and 22 (blue dots).
- The mid-stratosphere plume AOD decreases systematically over these days, so new particle formation between 1/20 and 1/22 is less likely.
- For the near-tropopause plume $\langle \langle \sim 20 \text{ km} \rangle$ ASL), the particles are predominantly medium, spherical non-light-absorbing, and do not change appreciably in size between 19 and 23 January (green dots).
- An unprecedented amount of water was injected into the mid-stratosphere by the eruption. This was expected to produce OH that would oxidize SO_2 rapidly, creating a great deal more sulfate than would otherwise occur.
- The MISR-observed growth in sulfate particles in the mid-stratosphere layer is at least consistent, and possibly supports, the model expectation.

Kahn et al., 2023 (submitted)

The Three-Way

Kahn et al., Rev. Geophys. 2023

Models are Required to Fill Gaps, Assess Forcing and Make Predictions

MISR *ANG***,** *AAOD* **Results** *Constrained by GoCART Model*

Shenshen Li, R. Kahn, et al. AMT 2015

Four years of data (2006-2009) ANG Seasonally averaged

$$
\text{Diff}_{\text{ANG}} = |\alpha_{\text{MISR}} - \alpha_{\text{GOCART}}| \le \varepsilon_{\text{ANG}}
$$

We rank the ε_{ANG} , $\varepsilon_{\text{AAOD}}$ and select the common or the lowest mixtures

AAOD

 $Diff_{AAOD}$ = $[Fraction_{MISR_AAOD}]$ $-Fraction_{GOCART_AAOD}$ $\leq \varepsilon_{AAOD}$

Fraction_{MISR} AAOD **is the absorbing fraction of total AOD**

Where remote-sensing data are ambiguous, can *use a model to weight the options*

Understanding changes in the radiative forcing of climate is critical for any effort to attribute, mitigate, or predict climate change

However, models must adopt particle microphysical properties from *somewhere*.

Statistically representative particle microphysical property distributions are lacking for most aerosol air masses

And also:

• Models are required for *deployment-site selection* and for *flight planning*:

- -- To determine the climatologically likely locations of aerosol *sources*
- -- To determine the aerosol air mass *downwind trajectories* that the aircraft must sample
- *After* the actual aircraft measurements have been acquired, *Models* are also needed to help assess the *sources*, as well as the *ages* and likely *aging mechanisms* sampled

SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air

Primary Goal: ^{[This} is currently a *concept-development effort*, not yet a project]

• Characterize statistically particle properties for major aerosol types globally, to provide detail unobtainable from space, adding value to models & satellite aerosol data, offering

 improved aerosol property assumptions for:

- **-- Modeling aerosol direct forcing and aerosol-cloud interactions**
- **-- Satellite retrieval algorithm climatology options or priors**

Plus: More robust translation between satellite-retrieved aerosol optical properties and species-specific aerosol mass and size tracked in aerosol transport, climate, & air quality models Substantially reduce model uncertainty & enhance the value of 23+ years of satellite aerosol *Kahn et al., BAMS 2017* **retrieval products**

Suborbital In Situ Required for PDFs of Particle Microphysical Properties

Aerosol intensive properties required for key aerosol science objectives, but *cannot be retrieved adequately* or are *entirely unobtainable from remote sensing*

*• Hygroscopicity****** – Ambient *particle hydration*, *aerosol-cloud interactions*

• Mass Extinction Efficiency – Translate between retrieved *optical properties* from remote sensing *& aerosol mass* book-kept in models

• Spectral Light-Absorption – Aerosol *direct & semi-direct forcing*, atmospheric stability structure & circulation

*• CCN Properties****** – At least part of the CCN size spectrum is *too small to be retrieved* by remote-sensing

Acquiring such data is feasible because:

Unlike aerosol amount, *aerosol microphysical properties tend to be repeatable* from year to year, for a given source in a given season

Kahn et al., BAMS 2017

*****Under special conditions, hygroscopicity (*Dawson et al. 2020*) and CCN # (*Rosenfeld et al. 2016*) can be derived from remote sensing; however: (*Stier*, ACP 2016)

Current GSFC **MISR** Team Activities*

Kahn et al., Rev. Geophys. 2023

Highlights the essential & unique role of each community in completing the aerosol forcing picture…

Multi-model Simulations of Global Mean Surface Temperature Timeline

(a) Absolute temperature simulations for 1850-2014 + forecasts using a moderate assumed future scenario

(SSP1-2.6) for 2015-2100,

for 25 models (gray lines)

+ Measurement – where available (black lines)

(b) Temperature anomalies

AVHRR (Advanced, Very High-Resolution Radiometer)

Aerosol Optical Depth (*Aerosol Column Amount*)

July 1989-June 1991

CALIPSO 6-Type Interpretive Aerosol Classification Scheme

Kim et al., 2018

One MODIS Aerosol Type Classification Low AOD **High AOD+Coarse High AOD+Fine**

Kaufman et al., JGR, 2005