Reducing the Uncertainty in Climate Predictions: Steps Toward Realizing the Potential of NASA's Earth Observing System, and Reducing Aerosol-Related Climate-Forcing Uncertainty

Ralph Kahn

NASA Goddard Space Flight Center

Multi-model Simulations of Global Mean Surface Temperature Timeline

From IPCC AR-6

Temperature anomaly simulations for 1850-2014 + forecasts using a moderate assumed future scenario (SSP1-2.6) for 2015-2100, for 25 models (gray lines) +

Measurement – where available (black lines)

Aerosol Climate Forcing – The contributions aerosols make toward heating & cooling the Earth System → Particle Microphysical Property Assumption & Cloud Process Uncertainties Dominate; Trace-gas Distributions also matter

Aerosol-related forcing uncertainty represents *the largest uncertainty overall* for making climate predictions

IPCC Equilibrium Climate Sensitivity Estimates & Estimated Uncertainties

From IPCC AR-6 Technical Summary

Phoenix Dust Storm 05 July 2011 Phoenix New Times

Ground-Based Views

https://www.noaa.gov/stories/where-there-s-wildfire-there-s-forecast

Hunga-Tonga eruption 15 January 2022 – CBS News

SeaWiFS - Sahara Dust over Canary Islands March 1998

What Satellites Offer

GOES/ABI – Hunga-Tonga eruption 15 January 2022

MODIS - Smoke from Alaska fires July 1, 2004

Saharan Dust Storm 8-day Trajectory Beginning 07 June 1967 ESSA 5 Satellite

Aerosol – Related Climate

Effects Aerosol Direct Radiative Forcing –

• Surface Cooling by Reflecting Sunlight (most particles)

• Atmospheric Warming by Absorbing Sunlight (dark particles)

Mt. Sinabung, Indonesia, March 2021 From The Atlantic

Aerosol Indirect Effects on Clouds –

- Cloud Brightening (CCN in aerosol-poor region make more, smaller droplets but changes in total liquid water also occur)
- Increase in Cloud Lifetime
- Cloud Dissipation (dark-particle "semi-direct" effect)
- Cloud Invigoration (smaller droplets rise to freezing elevation)

From https://aviation.stackexchange.com

Helianthus annuus pollen From en.wikipedia.org

Other Aerosol Effects –

- Ocean Fertilization (desert dust to iron-poor waters)
- Land Fertilization (e.g., phosphorous to Amazon)
- Transport of Pollen, Disease Vectors, etc.
- Atmospheric Circulation, Water Cycle changes

Climate – Related Changes in

Phoenix Dust Storm 05 July 2011 Phoenix New Times

Increasing Wildfire Smoke – Due to:

- Increasing Temperature
- Decreasing Relative Humidity (Drought + Higher Temp.)
- Ecosystem Collapse (Environmental Stress + Vulnerability to Pests, Disease)

Also Increasing PyroCumulonimbus-formation conditions

Aerosols

Increasing Airborne Dust – Due to:

- Desertification (Deforestation, Drying Water Resources, Over-grazing, Other Farming Practices)
- Changing Wind & Precipitation Patterns

Northern California Camp Fire June 2019 Wired

Changes in Biogenic & Photochemical Particle Formation – with changing Temp., Humidity, Land Cover, etc.

The Distinction between "Natural" and "Anthropogenic" Aerosol Has Become Ambiguous...

Highlights the essential & unique role of each community in completing the aerosol forcing picture...

The NASA Earth Observing System's Terra Satellite

Terra Project Office / NASA Goddard Space Flight Center

The NASA Earth Observing System's Terra Satellite

Terra Project Office / NASA Goddard Space Flight Center

MODerate-resolution Imaging Spectroradiometer [MODIS]

- NASA, Terra & Aqua
 - Launches: 1999, 2001
 - 704 km polar orbits, descending
 (10:30 a.m.) & ascending (1:30 p.m.)
- Sensor Characteristics
 - 36 spectral bands ranging from 0.41 to 14.385 μm
 - cross-track scan mirror with
 2330 km swath width
 - Spatial resolutions:
 - 250 m (bands 1 2)
 - 500 m (bands 3 7)
 - 1000 m (bands 8 36)
 - 2% reflectance calibration accuracy
 - onboard solar diffuser & solar diffuser stability monitor

Improved over AVHRR:

- Calibration
- Spatial Resolution
- Spectral Range & # Bands

Satellites Do a Reasonable Job with Monthly, Mid-visible AOD

Monthly, Global Aerosol Amount MODIS Mid-visible AOD (Dark Target + Deep Blue) July 2010

Recent Advance: *Pixel-Level AOD Uncertainty Estimates*

Importantly, this requirement, especially for AOD assimilation, came from AeroCom/AeroSat discussions

MODIS Team, NASA/GSFC

MISR Pixel-Level AOD Uncertainty Estimation Process

Figure 1. Example of calculation steps performed in the new methodology for determining AOD and its uncertainty. (a) χ^2_{abs} values for 74 MISR mixtures as a function of AOD (τ) (Eq. 1); (b) inverse (reciprocal) values for the 74 mixtures; and (c) inverse residuals averaged over all mixtures (Eq. 2), with the new retrieved AOD, ARCI, and FWHM indicated on the distribution. The *x*-axis scale is logarithmic in panel (a) for a better visualization of the cost function at low τ .

Witek et al., AMT 2018

Multi-angle Imaging SpectroRadiometer

http://www-misr.jpl.nasa.gov http://eosweb.larc.nasa.gov

- <u>Nine</u> CCD push-broom <u>cameras</u>
- <u>Nine view angles</u> at Earth surface: 70.5° forward to 70.5° aft
- <u>Four spectral bands</u> at each angle: 446, 558, 672, 866 nm
- Studies Aerosols, Clouds, & Surface

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

Parallax → Plume Height Multi-angle (7 min) → Motion Vectors

Red = zero-wind height Blue = wind-corrected height Green = surface elevation

Junghenn-Noyes, Kahn, et al. 2020

Wildfire Smoke Injection Heights & Source Strengths

[These are the two key parameters representing aerosol sources in climate models]

GoCART Model-Simulated Aerosol Amount Snapshots for *Different Assumed Source Strengths* Different Techniques for Assuming Model Source Strength Overestimate or Underestimate Observation Systematically in Different Regions

These two projects are the subjects of current AeroCom/AeroSat Experiments

Petrenko, Kahn, et al., JGR 2012; 2017; 2023 in prep.

1.00

MISR Wildfire Smoke Injection Height Climatology

- Individual Heights at 1.1 km Horizontal res., ~250-500 m Vertical res.
- Both *Pixel-weighted* and *AOD-weighted* profiles derived
- Fire emissions are *Stratified by Altitude*, *Region*, *Ecosystem*, & *Season*
- The cases in each stratum are *Averaged* to produce a statistical summary
- Inter-annual and/or sub-seasonal temporal resolution might be needed in some cases; requires detailed, regional study (e.g., Amazon)

https://misr.jpl.nasa.gov/getData/accessData/MisrMinxPlumes2/

Val Martin, Kahn & Tosca; Remt. Sens. 2018

Global Distribution of Percent Injected Within/Above the PBL Based on MERRA-2 Hourly PBL 10:00-13:00 LT

Accounting for uncertainty FT = PBL + 500 m

[PBL from MERRA-2]

2 km threshold avoids dependence on PBL height estimate

Satellites Also Constrain Aerosol Layer Height

1.0x10

9.0 8.0 7.0 6.0

5.0 4.0

Maritime

Seasonal dust (orange) and non-dust (blue) aerosol vertical distributions, Eastern China

Yu et al., JGR 2010

Single-scattering Phase Functions for *Different Particle Properties*

Los Alamos Fire, New Mexico May 9, 2000

MISR 60° Forward

MISR Nadir

MISR 60° Aft

Medium Spherical Smoke Particles

Dust blowing off the Sahara Desert -- 6 February 2004

Large Non-Spherical Dust Particles

MISR Aerosol Type Discrimination

Kahn & Gaitley JGR 2015

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

Williams Flats Fire Complex, Washington 06 August 2019 (FIREX-AQ Campaign)

From *Particle Type*, can infer: *Processes & Timescales*

- Oxidation progressively along plume
- Region II: Coagulation or hydration
- Region III: Gravitational settling
- Region IV: More BC from SW fire
- Validated w/FIREX in situ data
- Can now use MISR data globally, where field data are lacking

Canada-Alaska Smoke Plume Property Trends (663 plumes; 2016-2019)

Particle Size – Very Small Small Medium Large

Particle Type – Black Smoke Brown Smoke Non-absorbing

[Current study: *Siberia*]

Junghenn-Noyes, Kahn, et al. ACP 2022

The *timescales* over which *particle-type transitions* occur differ between plume types

- **Nonabsorbing** components begin to dominate over **absorbing** components
- *Medium* size components begin to dominate over *small* size components

Forest plumes

~ 2.5 - 3 hours; Larger, brighter particles; higher AOD & BrS

Woody plumes

Grassy plumes 📂

 ~ 4 - 7 hours for type NO increase in size;
 Smaller, darker particles;
 Lower AOD, highest BIS

~ 3 - 3.5 hours

Condensation/hydration probably dominate for F and W plumes, but dilution probably affects G plumes more

Volcanology from Space

Flower & Kahn 2017-2019

Timeline of Plume Observations – *Holuhraun Aug 2014-Feb 2015*

Multi-sensor eruption assessment

Particle properties relatively constant as the eruption progressed (minor variations due to cloud contamination)

 Retrievals dominated by small, spherical, nonabsorbing components

As the eruption progressed there were *decreases* in:

- plume detection and height
- SO_2 emission
- lava flow detection

Overall *higher thermal radiance* and *large flow area* than observed at Eyjafjallajökull

Plume from the Hunga-Tonga Hunga-Ha'apai Volcano Eruption MISR Active Aerosol Plume-Height (AAP) Project 20 January 2022, ~02:38 UTC

Larmonth AERONET Aerosol Amount

2822

MISR Plume Height 24- 29; AERONET AOD ~0.9; ANG ~1.05

Plume from the Hunga-Tonga Hunga-Ha'apai Volcano Eruption MISR Active Aerosol Plume-Height (AAP) Project 20 January 2022

20

January

0.980

0.985

113

0.990

0.995

-26

0.975

Fine-mode AOD Fraction

113

0.6 0.7 0.8 0.9

-26

January

0.4 0.5

111

0.2 0.3

0.1 0.2

0.3 0.4

0.5 0.6

0.7 0.8

0.9

AOD ~ 0.4-0.6; **ANG** ~1.2; **SSA** ~1.0; **Fine-mode** ~0.9%, **Medium-mode** ~0.1%, **NSph** < 5%

Kahn, et al. 2023, in preparation

Hunga Plume Evolution

bservations. Dates & Orbit #s. blae – mia-stratosphere, Green – near-tropopaase, Nea – Day-1, near-sourc

- For the mid-stratospheric plume (~30 km ASL), we see small-medium, spherical, non-light-absorbing particles dominating in the MISR retrievals, and they grow between 17 and 20 January, and then a reduction in retrieved effective particle size between 20 and 22 (blue dots).
- The mid-stratosphere plume AOD decreases systematically over these days, so new particle formation between 1/20 and 1/22 is less likely.
- For the near-tropopause plume (<~20 km ASL), the particles are predominantly medium, spherical non-light-absorbing, and do not change appreciably in size between 19 and 23 January (green dots).
- An unprecedented amount of water was injected into the mid-stratosphere by the eruption. This was expected to produce OH that would oxidize SO₂ rapidly, creating a great deal more sulfate than would otherwise occur.
- The MISR-observed growth in sulfate particles in the mid-stratosphere layer is at least consistent, and possibly supports, the model expectation.

Kahn et al., 2023 (submitted)

The Three-Way

Kahn et al., Rev. Geophys. 2023

Models are Required to *Fill Gaps, Assess Forcing* and *Make Predictions*

MISR ANG, AAOD Results Constrained by GoCART Model

Shenshen Li, R. Kahn, et al. AMT 2015

Four years of data (2006-2009) Seasonally averaged

$$\operatorname{Diff}_{\operatorname{ANG}} = |\alpha_{\operatorname{MISR}} - \alpha_{\operatorname{GOCART}}| \le \varepsilon_{\operatorname{ANG}}$$

ANG

We rank the $\epsilon_{ANG}, \epsilon_{AAOD}$ and select the common or the lowest mixtures

AAOD

 $Diff_{AAOD} = |Fraction_{MISR_AAOD} - Fraction_{GOCART_AAOD}| \le \varepsilon_{AAOD}|$

 $Fraction_{MISR\ AAOD}$ is the absorbing fraction of total AOD

Where remote-sensing data are ambiguous, can use a model to weight the options

Understanding changes in the radiative forcing of climate is critical for any effort to attribute, mitigate, or predict climate change

However, models must adopt particle microphysical properties from *somewhere*.

Statistically representative particle microphysical property distributions are lacking for most aerosol air masses

And also:

• *Models* are required for *deployment-site selection* and for *flight <u>planning</u>*

- -- To determine the climatologically likely locations of aerosol *sources*
- -- To determine the aerosol air mass *downwind trajectories* that the aircraft must sample
- <u>After</u> the actual aircraft measurements have been acquired, <u>Models</u> are also needed to help assess the <u>sources</u>, as well as the <u>ages</u> and likely <u>aging mechanisms</u> sampled

Kahn et al., Rev. Geophys. 2023

SAM-CAAM Concept

[Systematic Aircraft Measurements to Characterize Aerosol Air

Primary Goal: [This is currently a *concept-development effort*, not yet a project]

 Characterize <u>statistically</u> particle properties for major aerosol types globally, to provide detail unobtainable from space, adding value to models & satellite aerosol data, offering

improved aerosol property assumptions for:

- -- *Modeling* aerosol direct forcing and aerosol-cloud interactions
- -- Satellite retrieval algorithm climatology options or priors

<u>Plus</u>: More robust *translation between satellite-retrieved aerosol optical properties and* species-specific aerosol mass and size tracked in *aerosol transport, climate, & air quality Substalstially reduce model uncertainty & enhance the value of 23+ years of satellite aerosol retrieval products* Kahn et al., BAMS 2017

Suborbital In Situ Required for PDFs of Particle Microphysical Properties

Aerosol intensive properties required for key aerosol science objectives, but *cannot be retrieved adequately* or are *entirely unobtainable from remote sensing*

- Hygroscopicity* – Ambient particle hydration, aerosol-cloud interactions

Mass Extinction Efficiency – Translate between retrieved optical properties from remote sensing & aerosol mass book-kept in models

- *Spectral Light-Absorption* – Aerosol *direct & semi-direct forcing*, atmospheric stability structure & circulation

CCN Properties* – At least part of the CCN size spectrum is too small to be retrieved by remote-sensing

Acquiring such data is feasible because:

Unlike aerosol amount, *aerosol microphysical properties tend to be repeatable* from year to year, for a given source in a given season

Kahn et al., BAMS 2017

*Under special conditions, hygroscopicity (Dawson et al. 2020) and CCN # (Rosenfeld et al. 2016) can be derived from remote sensing; however: (Stier, ACP 2016)

Current GSFC MISR Team Activities*

Kahn et al., Rev. Geophys. 2023

Highlights the essential & unique role of each community in completing the aerosol forcing picture...

Multi-model Simulations of Global Mean Surface Temperature Timeline

(a) Absolute temperature simulations for 1850-2014 + forecasts using a moderate

assumed future scenario

(SSP1-2.6) for 2015-2100,

for 25 models (gray lines)

Measurement – where available (black lines)

(b) Temperature anomalies

AVHRR (Advanced, Very High-Resolution Radiometer)

Aerosol Optical Depth (Aerosol Column Amount)

July 1989-June 1991

CALIPSO 6-Type Interpretive Aerosol Classification Scheme

Kim et al., 2018

One MODIS Aerosol Type ClassificationLow AODHigh AOD+CoarseHigh AOD+Fine

Kaufman et al., JGR, 2005